首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14595篇
  免费   1368篇
  国内免费   1589篇
  2024年   13篇
  2023年   215篇
  2022年   281篇
  2021年   871篇
  2020年   637篇
  2019年   735篇
  2018年   710篇
  2017年   500篇
  2016年   680篇
  2015年   991篇
  2014年   1118篇
  2013年   1256篇
  2012年   1380篇
  2011年   1284篇
  2010年   767篇
  2009年   723篇
  2008年   781篇
  2007年   658篇
  2006年   652篇
  2005年   414篇
  2004年   410篇
  2003年   384篇
  2002年   333篇
  2001年   245篇
  2000年   196篇
  1999年   199篇
  1998年   162篇
  1997年   118篇
  1996年   106篇
  1995年   95篇
  1994年   73篇
  1993年   64篇
  1992年   84篇
  1991年   59篇
  1990年   53篇
  1989年   50篇
  1988年   41篇
  1987年   28篇
  1986年   22篇
  1985年   29篇
  1984年   19篇
  1983年   11篇
  1982年   17篇
  1981年   11篇
  1980年   8篇
  1979年   11篇
  1978年   10篇
  1977年   7篇
  1975年   11篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 828 毫秒
991.
This work describes in-depth NMR characterization of a unique low-barrier hydrogen bond (LBHB) between an active site residue from the enzyme and a bound inhibitor: the complex between secreted phospholipase A(2) (sPLA(2), from bee venom and bovine pancreas) and a transition-state analog inhibitor HK32. A downfield proton NMR resonance, at 17-18 ppm, was observed in the complex but not in the free enzyme. On the basis of site-specific mutagenesis and specific 15N-decoupling, this downfield resonance was assigned to the active site H48, which is part of the catalytic dyad D99-H48. These results led to a hypothesis that the downfield resonance represents the proton (H(epsilon 2) of H48) involved in the H-bonding between D99 and H48, in analogy with serine proteases. However, this was shown not to be the case by use of the bovine enzyme labeled with specific [15N(epsilon 2)]His. Instead, the downfield resonance arises from H(delta1) of H48, which forms a hydrogen bond with a non-bridging phosphonate oxygen of the inhibitor. Further studies showed that this proton displays a fractionation factor of 0.62(+/-0.06), and an exchange rate protection factor of >100 at 285 K and >40 at 298 K, which are characteristic of a LBHB. The pK(a) of the imidazole ring of H48 was shown to be shifted from 5.7 for the free enzyme to an apparent value of 9.0 in the presence of the inhibitor. These properties are very similar to those of the Asp em leader His LBHBs in serine proteases. Possible structural bases and functional consequences for the different locations of the LBHB between these two types of enzymes are discussed. The results also underscore the importance of using specific isotope labeling, rather than extrapolation of NMR results from other enzyme systems, to assign the downfield proton resonance to a specific hydrogen bond. Although our studies did not permit the strength of the LBHB to be accurately measured, the data do not provide support for an unusually strong hydrogen bond strength (i.e. >10 kcal/mol).  相似文献   
992.
The CD134-CD134 ligand (CD134L) costimulatory pathway has been shown to be critical for both T and B cell activation; however, its role in regulating the alloimmune response remains unexplored. Furthermore, its interactions with other costimulatory pathways and immunosuppressive agents are unclear. We investigated the effect of CD134-CD134L pathway blockade on allograft rejection in fully MHC-mismatched rat cardiac and skin transplantation models. CD134L blockade alone did not prolong graft survival compared with that of untreated recipients, and in combination with donor-specific transfusion, cyclosporine, or rapamycin, was less effective than B7 blockade in prolonging allograft survival. However, in combination with B7 blockade, long-term allograft survival was achieved in all recipients (>200 days). Moreover, this was synergistic in reducing the frequency of IFN-gamma-producing alloreactive lymphocytes and inhibiting the generation of activated/effector lymphocytes. Most impressively, this combination prevented rejection in a presensitized model using adoptive transfer of primed lymphocytes into athymic heart transplant recipients. In comparison to untreated recipients (mean survival time (MST): 5.3 +/- 0.5 days), anti-CD134L mAb alone modestly prolonged allograft survival (MST: 14 +/- 2.8 days) as did CTLA4Ig (MST: 21.5 +/- 1.7 days), but all grafts were rejected within 24 days. Importantly, combined blockade further and significantly prolonged allograft survival (MST: 75.3 +/- 12.7 days) and prevented the expansion and/or persistence of primed/effector alloreactive T cells. Our data suggest that CD134-CD134L is a critical pathway in alloimmune responses, especially recall/primed responses, and is synergistic with CD28-B7 in mediating T cell effector responses during allograft rejection. Understanding the mechanisms of collaboration between these different pathways is important for the development of novel strategies to promote long-term allograft survival.  相似文献   
993.
Role of the ErbB-4 carboxyl terminus in gamma-secretase cleavage   总被引:1,自引:0,他引:1  
The ErbB-4 receptor tyrosine kinase has a PDZ domain recognition motif at its carboxyl terminus. The first step in ErbB-4 proteolytic processing is a metalloprotease-dependent cleavage of the receptor ectodomain, which is not influenced by deletion of this motif. Metalloprotease cleavage of ErbB-4 produces a membrane-associated 80-kDa fragment that is a substrate for subsequent gamma-secretase cleavage, which releases the cytoplasmic domain from the membrane and allows nuclear translocation of this fragment. Deletion of the PDZ domain recognition motif does abrogate the gamma-secretase cleavage of ErbB-4. The wild-type 80-kDa ErbB-4 fragment forms an association complex with presenilin, thought to be the catalytic moiety of gamma-secretase activity. However, this association is significantly impaired by loss of the PDZ domain recognition motif from ErbB-4. Deletion of this ErbB-4 motif prevents the nuclear localization of the ErbB-4 cytoplasmic domain. Data also show that the basal cleavage of wild-type ErbB-4 by this proteolytic system can produce a sufficient level of ErbB-4 processing to negatively influence cell growth and that loss of the PDZ domain recognition motif abrogates this response.  相似文献   
994.
In a recent study, we reported that in bovine brain extract, glycogen synthase kinase-3beta and tau are parts of an approximately 400-500 kDa microtubule-associated tau phosphorylation complex (Sun, W., Qureshi, H. Y., Cafferty, P. W., Sobue, K., Agarwal-Mawal, A., Neufield, K. D., and Paudel, H. K. (2002) J. Biol. Chem. 277, 11933-11940). In this study, we find that when purified brain microtubules are subjected to Superose 12 gel filtration column chromatography, the dimeric scaffold protein 14-3-3 zeta co-elutes with the tau phosphorylation complex components tau and GSK3 beta. From gel filtration fractions containing the tau phosphorylation complex, 14-3-3 zeta, GSK3 beta, and tau co-immunoprecipitate with each other. From extracts of bovine brain, COS-7 cells, and HEK-293 cells transfected with GSK3 beta, 14-3-3 zeta co-precipitates with GSK3 beta, indicating that GSK3 beta binds to 14-3-3 zeta. From HEK-293 cells transfected with tau, GSK3 beta, and 14-3-3 zeta in different combinations, tau co-immunoprecipitates with GSK3 beta only in the presence of 14-3-3 zeta. In vitro, approximately 10-fold more tau binds to GSK3 beta in the presence of than in the absence of 14-3-3 zeta. In transfected HEK-293 cells, 14-3-3 zeta stimulates GSK3 beta-catalyzed tau phosphorylation in a dose-dependent manner. These data indicate that in brain, the 14-3-3 zeta dimer simultaneously binds and bridges tau and GSK3 beta and stimulates GSK3 beta-catalyzed tau phosphorylation.  相似文献   
995.
The BRCA1 tumor suppressor forms a heterodimer with the BARD1 protein, and the resulting complex functions as an E3 ubiquitin ligase that catalyzes the synthesis of polyubiquitin chains. In theory, polyubiquitination can occur by isopeptide bond formation at any of the seven lysine residues of ubiquitin. The isopeptide linkage of a polyubiquitin chain is a particularly important determinant of its cellular function, such that K48-linked chains commonly target proteins for proteasomal degradation, while K63 chains serve non-proteolytic roles in various signaling pathways. To determine the isopeptide linkage formed by BRCA1/BARD1-dependent polyubiquitination, we purified a full-length heterodimeric complex and compared its linkage specificity with that of E6-AP, an E3 ligase known to induce proteolysis of its cellular substrates. Using a comprehensive mutation analysis, we found that E6-AP catalyzes the synthesis of K48-linked polyubiquitin chains. In contrast, however, the BRCA1/BARD1 heterodimer directs polymerization of ubiquitin primarily through an unconventional linkage involving lysine residue K6. Although heterologous substrates of BRCA1/BARD1 are not known, BRCA1 autoubiquitination occurs principally by conjugation with K6-linked polymers. The ability of BRCA1/BARD1 to form K6-linked polyubiquitin chains suggests that it may impart unique cellular properties to its natural enzymatic substrates.  相似文献   
996.
The protein kinase D (PKD) family consists of three serine/threonine kinases: PKC micro/PKD, PKD2, and PKCnu/PKD3. Whereas PKD has been the focus of most studies, virtually nothing is known about the effect of G protein-coupled receptor agonists (GPCR) on the regulatory properties and intracellular distribution of PKD3. Consequently, we examined the mechanism that mediates its activation and intracellular distribution. GPCR agonists induced a rapid activation of PKD3 by a protein kinase C (PKC)-dependent pathway that leads to the phosphorylation of the activation loop of PKD3. Comparison of the steady-state distribution of endogenous or tagged PKD3 versus PKD and PKD2 in unstimulated cells indicated that whereas PKD and PKD2 are predominantly cytoplasmic, PKD3 is present both in the nucleus and cytoplasm. This distribution of PKD3 results from its continuous shuttling between both compartments by a mechanism that requires a nuclear import receptor and a competent CRM1-nuclear export pathway. Cell stimulation with the GPCR agonist neurotensin induced a rapid and reversible plasma membrane translocation of PKD3 that is PKC-dependent. Interestingly, the nuclear accumulation of PKD3 can be dramatically enhanced in response to its activation. Thus, this study demonstrates that the intracellular distribution of PKD isoenzymes are distinct, and suggests that their signaling properties are regulated by differential localization.  相似文献   
997.
998.
Gradients of species richness (S; the number of species of a given taxon in a given area and time) are ubiquitous. A key goal in ecology is to understand whether and how the many processes that generate these gradients act at different spatial scales. Here we evaluate six hypotheses for diversity gradients with 49 New World ant communities, from tundra to rain forest. We contrast their performance at three spatial grains from S(plot), the average number of ant species nesting in a m2 plot, through Fisher's alpha, an index that treats our 30 1-m2 plots as subsamples of a locality's diversity. At the smallest grain, S(plot), was tightly correlated (r2 = 0.99) with colony abundance in a fashion indistinguishable from the packing of randomly selected individuals into a fixed space. As spatial grain increased, the coaction of two factors linked to high net rates of diversification--warm temperatures and large areas of uniform climate--accounted for 75% of the variation in Fisher's alpha. However, the mechanisms underlying these correlations (i.e., precisely how temperature and area shape the balance of speciation to extinction) remain elusive.  相似文献   
999.
The state transitions of the cyanobacterium Synechococcus sp. PCC 7002 and of three mutant strains, which were impaired in PsaE-dependent cyclic electron transport (psaE(-)), respiratory electron transport (ndhF(-)) and both activities (psaE(-)ndhF(-)), were analyzed. Dark incubation of the wild type and psaE(-) cells led to a transition to state 2, while the ndhF(-) strains remained in state 1 after dark incubation. The ndhF(-) cells adapted to state 2 when the cells were incubated under anaerobic conditions or in the presence of potassium cyanide; these results suggest that the ndhF(-) cells were inefficient in performing state 1 to state 2 transitions in the dark unless cytochrome oxidase activity was inhibited. In the state 2 to state 1 transition of wild-type cells induced by light in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), there was still a significant reduction of the interphotosystem electron carriers by both respiration and cyclic electron flow around PSI. Kinetic analysis of the state 2 to state 1 transition shows that, in the absence of PSII activity, the relative contribution to the reduced state of the interphotosystem electron carriers by respiratory and cyclic electron transfer is about 72% and 28%, respectively. The state 2 to state 1 transition was prevented by the cytochrome b(6)f inhibitor 2,5-dibromo-3-methyl-6-isopropylbenzoquinone (DBMIB). On the other hand, the state 1 to state 2 transition was induced by DBMIB with half times of approximately 8 s in all strains. The externally added electron acceptor 2,5-dimethyl-benzoquinone (DMBQ) induced a state 2 to state 1 transition in the dark and this transition could be prevented by DBMIB. The light-induced oxidation of P700 showed that approximately 50% of PSI could be excited by 630-nm light absorbed by phycobilisomes (PBS) under state 2 conditions. P700 oxidation measurements with light absorbed by PBS also showed that the dark-induced state 1 to state 2 transition occurred in wild-type cells but not in the ndhF(-) cells. The possible mechanism for sensing an imbalanced light regime in cyanobacterial state transitions is discussed.  相似文献   
1000.
Divergent roles of GSK3 and CDK5 in APP processing   总被引:8,自引:0,他引:8  
Glycogen synthase kinase-3 (GSK3) and cyclin-dependent kinase 5 (CDK5) are related serine/threonine kinases that have been well studied for their role in tau hyperphosphorylation, however, little is known about their significance in APP processing. Here we report that GSK3 and CDK5 are involved in APP processing in a divergent manner. Specific inhibition of cellular GSK3 by lithium or GSK3beta antisense elicits a reduction in Abeta. Conversely, negative modulation of cellular CDK5 activity by CDK5 inhibitor, roscovitine, or CDK5 antisense stimulates Abeta production. Neither GSK3 nor CDK5 inhibition by these means significantly affected cellular APP levels or APP maturation. Moreover, oral administration of lithium significantly reduces Abeta production whereas direct ICV administration of roscovitine augmented Abeta production in the brains of PDAPP (APP(V717F)) mice. Our data support a function for both GSK3 and CDK5 in APP processing, further implicating these two kinases in the pathogenesis of Alzheimer's disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号